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as (1 /V) l t th~.kFh_kFk.  However, this is not correct 
because the operation ~p * p2, which is equivalent to 
(1 / V) qzhYuF,_ kFk, exaggerates errors in the current 
densities.. The same question points to the current 
use of the tangent formula (for a review see 
Woolfson, 1987). As previously shown (Barrett & 
Zwick, 1971), it is possible to obtain from Sayre's 
equation 

~'.lFh_ kFk] sin (~Dh_ k "3 t- ~ k )  
k 

tan ~h = ZlFh_kFk I COS (~h-k "1- ~:~k) ' 
k 

which is essentially the same as the tangent formula 
(Karle & Hauptman, 1956). In the light of the argu- 
ment given above, the phases calculated from this 
equation are not more correct than the current ones 
but new more correct phases should be obtained 
through some process that equalizes the current 
phases with the calculated ones. 
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Abstract 

The maximum-entropy method (MEM) has been 
tested on a limited set of noisy Fourier data from a 
known electron-density distribution (EDD). It is 
shown that maximizing the entropy of the EDD 
under the usual condition of fitting the variance of 
the data set does not necessarily lead to a satisfactory 
error distribution of the calculated reflections. The 
MEM property of producing the flattest EDD con- 
sistent with the data causes the calculated values of 
strong reflections to deviate systematically as much 
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as possible from their measured values. Calculated 
values of strong reflections are usually smaller than 
their measured values. The use of a novel constraint 
on the entropy maximization greatly improves the 
form of the error distribution and also the calculated 
EDD. 

I. Introduction 

The common method of extracting the EDD from an 
incomplete and noisy data set is to fit the data to a 
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model that depends on adjustable parameters. One 
of the reasons a model is used is to reduce the effect 
of noise in the measured reflections on the resulting 
EDD. The global characteristics of the resulting 
EDD are expected to be correct since these are 
incorporated in the model. However, if there are 
subtle features in the EDD that cannot be accommo- 
dated by the model, these features will either get lost 
or show up in distorted form in the EDD. Several 
programs [e.g. POP (Craven, Weber & He, 1987), 
M O L L Y  (Hansen & Coppens, 1978) and LSEXP 
(Hirshfeld, 1971, 1977)] exist to model the data. 
They all use the least-squares method to obtain the 
fit parameters but their models differ in functional 
form and in number of adjustable parameters. EDDs 
obtained with these programs are often slightly dif- 
ferent from each other (Baert, Coppens, Stevens & 
Devos, 1982; Lecomte, 1991). This raises the ques- 
tion of the best estimate of the EDD given a certain 
data set. 

The EDD is a positive and additive quantity. In 
this case, the principle of maximum entropy states 
that, out of all the EDDs consistent with the data, 
we should choose the one that maximizes the 
Shannon-Jaynes entropy (Jaynes, 1983), defined in 
the next section. 

The data are a set of M measured reflections. The 
system studied is a centrosymmetric crystal in which 
the phase problem is assumed to be solved. The 
experimental structure factors are denoted Dhkt. The 
structure factors corresponding with the desired 
EDD are denoted Fhk~. With the assumption that the 
experimental errors (~rhkl) are independent and that 
M is large enough, the quantity 

C = Z (Fhkl--Ohkl)2/Or2kl (1) 
h.k,l 

will satisfy 

C = M .  (2) 

This is the only information provided by the experi- 
ment and serves as a constraint in the maximization 
of the entropy. 

The unconstrained maximum of the entropy is 
given by a flat EDD. This means that, if we do not 
have any data apart from a knowledge of the total 
number of electrons per unit cell, the best estimate 
we can make is a flat EDD, any other estimate being 
based on some sort of information. If we do have 
data, it is still possible that the unconstrained maxi- 
mum satisfies C _< M, which means the data are too 
noisy for any information to be extracted. Otherwise, 
the solution lies on the boundary, C = M. 

For the resulting EDD, the quantities 

(Ir.k,I- [O,,,.,I)/o',,k, (3) 
may be calculated and presented in a frequency 

histogram. This histogram should be nearly 
Gaussian from a statistical point of view. With the 
application of the usual maximum-entropy method 
in EDD studies, this is not the case (Jauch & Palmer, 
1993), with serious consequences for the EDD. We 
anlyse the cause of this artefact and suggest a solu- 
tion to it in §4. 

In §2, we describe some computational aspects of 
the program that was written to perform the entropy 
maximization. In §3, we present the results of an 
application of the method to the Fourier components 
of a hypothetical crystal with a known EDD. We 
have calculated those Fourier components that 
would be measured in a standard X-ray experiment 
and added noise. After presenting our modification 
of the method in §4, we apply the new method to the 
same Fourier components. Finally, in §5, we apply 
both methods to the Pendell6"sung data for silicon 
measured by Saka & Kato (1986). We compare our 
results with those of a previous application of the 
MEM to this data by Sakata & Sato (1990). 

2. Description of the algorithm 

It is our aim to maximize the Shannon entropy S(f ) ,  
defined by 

Ni N2 N3 

S ( f )  = - Z Z Z Po,,, In p,j,~, (4) 
i = l  j = l  m = l  

Po,,, = [1/7,(f)]fj;,,, (5) 

Ni N 2 N3 

~',( f)= Z Z 2 fj,,,, (6) 
i = l  j = l  t?t=l  

where the electron density f(r) in the crystallographic 
unit cell is represented by its values f~,, on a three- 
dimensional grid of N I x  N2 × N3 points. The maxi- 
mization has to be done under the constraints 

fj,,, _> 0, (7) 

C ( f )  = Z {[Fhk, ( f ) -  Dhk,]/O'hk,} 2= M, (8) 
h,k, l  

T ( f )  = (Vce,,/N, N2N3) ~ fj,,, = N. (9) 
i , j ,m 

We make sure that the first constraint is satisfied by 
using lnf~;, as our basic variables instead offijm. In 
the second constraint (8), the sum runs over all 
measured unique reflections. Fhkl(f) and Dhkl are the 
calculated and measured structure factors, respec- 
tively; M is the number of measured unique reflec- 
tions. It is useful to expand the sum in C ( f )  so as 
to include all symmetry-related reflections in order 
to be able to make use of fast-Fourier-transform 
algorithms. The value of C ( f )  is kept the same by 
multiplying all the variances O'~k/by the total number 
of equivalent reflections Fhkl. The triple sum in T ( f )  
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is a shorthand notation for the sum over all grid 
points. N is the total number of electrons per unit 
cell. 

The usual way to incorporate the constraints into 
the maximization is to introduce a Lagrange multi- 
plier for each constraint and optimize 

O( f )  = S ( f ) -  A C ( f ) -  Ix T( f ) .  (10) 

One then optimizes Q( f )  unconditionally for given 
values of ,~ and # and changes ,t and /x until the 
constraints on C( f )  and T( f )  are satisfied. Here, we 
adopt a method developed by Skilling & Bryan 
(1984), who maximize 

Q ( f )  = a S ( f ) -  C( f ) ,  (11) 

S ( f )  = - E fjm In (fore~A) - Y(f) ,  (12) 
i,j,m 

where a is chosen such that (8) is satisfied and A 
such that (9) is satisfied. It is not difficult to demon- 
strate that (10) and (11) have the same solutions. 
Equation (11), however, has several computational 
advantages. 

In the actual calculations, we choose A and 
optimize Q ( f )  under the constraint (8). We then 
vary A until (9) is satisfied. The optimization of Q ( f )  c 
consists of two parts. In the first part, we make sure ~" 
that we gradually approach the surface C ( f ) =  M. "~ 
Once we are on this surface, we optimize Q( f )  while ~ 
at the same time we choose a such that we stay on 8 
the surface C( f )  = M. The constrained maximum is o 
obtained when the vectors aS~Of.s,,, and OC/Ofo,,, are 
parallel. We check this by calculating 

0C [ E (  o f  ~2 1/2})2. 

12.5 

When 6 < 10 -3 we assume that our calculation has 
12.1 

converged. A detailed description of  the program is 
given in Appendices A and B. 11.7 

In Figs. l(a) and (b), we have visualized the value 
of the constraint C( f )  and the value of the entropy 
S-(f) from the run on the silicon data (§5). 

3. Test on a hypothetical water crystal 

To test the maximum-entropy method, a set of struc- 
ture factors was generated from a known density. 
This density was constructed in three steps. First, the 
density of one water dimer was calculated from an ab 
initio molecular wavefunction using a 6 -31G** 
basis set. Two water dimers were put into a 
centrosymmetric unit cell (Fig. 2) with dimensions 6 
x 6 x 3 A and ce = fl = y = 90 ° (space group P2/m; 

unique axis c). Next, the EDD was partitioned into 
atomic contributions and thermally smeared with the 
assumption of independent atomic vibrations, as 
described by Bruning & Feil (1992). Isotropic tem- 
perature factors for the atoms at 100 K were taken 
from Eriksson & Hermansson (1983). The resulting 
reflections were finally transformed into our EDD by 
Fourier summation of all the reflections with 
(sin 0)/~ < 5 A -~. The result is plotted in Fig. 3. 
From now on, we call this EDD our reference EDD. 

Experimentally, when molybdenum radiation is 
used, one can only measure reflections for which 
(sin 0)/A < 1.4/k-] .  As is well known, a direct Fou- 
rier transformation of this limited set of reflections 
usually yields rather bad EDDs, even when the 
reflections can be measured exactly. In Fig. 4, we 
present the result of such a direct Fourier transfor- 
mation; reflections which would have been con- 
sidered insignificant in a real experiment have been 
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Fig. 1. Values of  some quantities during a typical run of  the 
program. (a) C(f). (b) -$(f). The dashed line in (b) is the same 
curve but on a different scale (right y axis). 
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omit ted .  One  easi ly recognizes the osci l la t ions  in t ro-  
duced by the a b r u p t  t r unca t i on  of  the Four i e r  sum- 
ma t ion .  The  M E M  does no t  suffer f rom this  p rob lem 
because it opera tes  in real space; it effectively extra-  
pola tes  the set o f  measu red  reflections in a s m o o t h  
way.  In  Fig. 5, we have  p lo t ted  the results  of  an  
app l i ca t ion  of  the M E M  with  a 64 x 64 x 32 grid to 
the exact  reflections for  which  (sin 0)/A < 1.4 A -  . In 
order  to m a k e  the predic ted reflections equal  to the 
exact ly  measu red  reflections,  we have  t aken  near ly  all 
the O ' h k  l values to be equal  to 1 (for a few s t rong  
low-order  reflections Orhkl  = 0.1) and  m a d e  C = 0 . 2 .  
Fig. 5 shows,  r a the r  spectacular ly ,  the great  power  o f  
the M E M  as a tool  to d imin i sh  t r unca t i on  effects. 
The  difference be tween the M E M  dens i ty  and  the 
reference E D D  is given in Fig. 6. The  ma in  differen- 
ces occur  at  the  nuclei  of  the O a toms.  

In  a real  exper iment ,  all reflections are measu red  
wi th  a cer ta in  error .  To  s imula te  the exper imenta l  

\ .............. 

t 

C 

_ b  _ - -  _ ~ _  

Fig. 2. The orientation of the water dimers in the unit cell. The 
nuclei of the lower-left water molecule and the O atom of the 
lower-right molecule are in the mirror plane z = ~-. The upper 
water dimer is added to make the crystal centrosymmetric. 

situation, we used reflections for which (sin O)/a < 
1.4 A-~ and added Gaussian noise to them such that 
low-order reflections had an error of 1% of their 
absolute value (including an assumed background) 
and the high-order reflections had an error of 10%. 
Reflections for which the amplitude was less than 3{r 
were omi t t ed  since the phase  o f  the reflections c a n n o t  
be de te rmined  wi th  100% cer ta in ty  (these are the 
reflections tha t  we referred to in the preced ing  
pa ragraph) .  This  resul ted in 1752 un ique  reflections. 

i (0 o / ~ / . / ~ \ \ 1  "--h'~JOh -U(otc/-w-~'-..o-~'h'-. ' )11 
• ~ ~ O ~  o "- 

F i g .  4. The EDD resulting from a direct Fourier transformation of 
all the (exact) reflections calculated from the hypothetical water- 
dimer crystal [(sin 0)/a < 1.4 A- ']. Reflections that would have 
been considered insignificant in a real experiment were omitted. 
Positive contours are drawn as solid lines, zero contours as 
dash-dotted lines and negative contours as dotted lines. The 
contours are at intervals of 0.1 e A - 3 

1 Fig. 3. The reference EDD in the z =~ plane, calculated from a 
Fourier summation of all the reflections for which (sin 0)/a < 
5 A- ~. The contours are at intervals of 0.1 e A- 3 

Fig. 5. The EDD calculated with the MEM from the reflections 
that were used to calculate the EDD of Fig. 4. The contours are 
at intervals of 0.1 e A- 3. 
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In Fig. 7, we have plotted the E D D  obtained from 
a M E M  calculation with the data described above. 
Comparing this density with the reference E D D  
given in Fig. 3, we see that the agreement between 
the two is very poor. The M E M  solution is little 
better than the direct Fourier transformation given 
in Fig. 4. 

4. Weighting scheme 

In this section, we investigate the reason for the poor 
result obtained with the M E M  applied to noisy data. 
In constructing the 'experimental '  reflections, we 

Fig. 6. The difference between the EDD obtained with the MEM 
(Fig. 5) and the reference density (Fig. 3). The zero contour has 
been omitted. The contours are at intervals of 0.1 e ,&, - 3 

have assumed Gaussian noise. We therefore want the 
differences between the predicted and the measured 
structure factors to have a Gaussian distribution 
also. A histogram of this distribution is given in Fig. 
8, showing that the resulting distribution is far from 
Gaussian. In fact, a few strong low-order reflections 
tend to deviate by many (up to 18.8) ~r from their 
measured values (these are not shown in Fig. 8). As a 
result, the weaker high-order reflections have to be 
exactly equal to their measured values. By optimizing 
the entropy subject to C = M, we have constrained 
the variance of the resulting distribution but not its 
shape. 

In order to gain more insight into the cause of  our 
problem, we have calculated the entropy of a single 
reflection. This we have done by taking one structure 
factor of  given wavelength and amplitude, adding 
F(000) and calculating the entropy of the corre- 
sponding EDD. First, we have found that the result 
is independent of the wavelength of the structure 
factor. The dependence on its amplitude is given in 
Fig. 9. Of  course, the entropy of  the total E D D  is 
not a sum of the entropies of the individual reflec- 
tions but nevertheless we think that Fig. 9 gives an 
approximate impression of what happens to the 
entropy when the amplitude of one single reflection 
is changed. From Fig. 9, we see that the entropy 
decreases almost quadratically with the amplitude of  
the structure factor. As a result, the increase of  the 
entropy will be much larger when a large-amplitude 
reflection is reduced in value than when a small 
amplitude reflection is reduced in value. This is 
exactly what happens in the optimization. 

We suggest that the problems mentioned in the 
last paragraph can be solved by the use of a 

Fig. 7. The EDD calculated with the MEM from the reflections 
that were used to calculate the EDD of Fig. 4. Noise was added 
to these reflections. The contours are at intervals of 0.1 e/~-3. 
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Fig. 8. Histogram of the values ([F/,,~[ - ID,,,,,I)/o,,,,, at intervals of 
0.05 from the MEM calculation. The maximum of the peak is at 
the interval [ -  0.025, 0.025]. The height of the peak is 777. Nine 
reflections, with (IF~,,I- IDh,,I)/crh,, values of - 18.8, - 18.75, 
- 18.25, - 14.90, - 13.60, - 10.70, -7.85, -6.40 and -5.65, 
are not shown. The thick solid line is the exact Gaussian 
distribution. 



388 E L E C T R O N - D E N S I T Y  D I S T R I B U T I O N  F R O M  X-RAY E X P E R I M E N T S  

weighting scheme in the constraint C. Therefore, we 
have maximized the entropy subject to 

K ( f )  = ~. Whkz[(Fhk,-- D~k,)2/O'~k,] = P. (14) 
h,k.l 

The value of Whk~ has to be large for strong low-order 
reflections so that they do not deviate much from 
their measured values. After some practice, it was 
found that choosing Whkz equal to the inverse of  the 
length of the reciprocal-lattice vector to the fourth 
power, 

W~k,= 1/IGI 4, (15) 
where G = ha* + kb* + le*, gives the best results. 

The value of P can be chosen in several ways. One 
choice might  be P = Y~Whkz. Another  possibility is to 
choose P such that C =  M. Because Whkz and 
(Fhk~- Dhkt)2/Ot2k! are not independent,  these choices 
are not equivalent. We have chosen the latter possi- 
bility, i.e. P such that C = M. 

The E D D  resulting from this opt imizat ion is given 
in Fig. 10. The map  resembles the reference E D D  
quite well a l though the contour level of  0.1 e A - 3  is 
not as smooth as might be expected. This may be 
caused by a remaining tendency of the M EM to 
lower the absolute values of the strong reflections. 
The corresponding error distr ibution is presented in 
Fig. I1. This distr ibution is nearly Gaussian and 
there are no extremes as in the histogram presented 
in Fig. 8. 

5. Silicon 

Accurate Pendell6"sung data on silicon have been 
measured by Saka & Kato (1986). The M EM has 
been applied to these data by Sakata & Sato (1990). 
Using our program, we have calculated the E D D  of  
silicon (on a 64 x 64 x 64 grid) with and without the 

use of the weighting scheme proposed in the preced- 
ing section. Of course, the calculation without the 
use of the weighting scheme gives the same EDD as 
that obtained by Sakata & Sato (1990). The EDD 
obtained with the use of the weighting scheme was 
almost exactly equal to the E D D  obtained by Sakata 
& Sato (1990). 

The reason for this is that the error in the meas- 
ured reflections is very small. With an error of  zero 
on each reflection, the use of  the weighting scheme 
has no effect: both methods will give the same EDD. 
So, when the error is very small, not much difference 
between the methods is to be expected. The error 
distr ibutions of  the methods are given in Figs. 12(a) 
and (b). The entropy maximizat ion in which a 
weighting scheme was used in the constraint  gives a 

& n/tl/),J 

Fig. 10. The EDD calculated with the MEM using a weighting 
scheme in the constraint C(f). The contours are at intervals of 
0.1 e/~ -3 . 
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Fig. 9. The entropy of a reflection (together with its Friedel-related 
reflection) as a function of its amplitude. The F(000) reflection 
has been added to avoid negative densities. The dashed line is a 
polynomial fit of order 2. 
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slightly better error distribution but, since we have 
only 30 reflections, the statistics do not allow us to 
draw definite conclusions. 

6. Concluding remarks 

From the calculations on the hypothetical water- 
dimer crystal, we can conclude that the MEM 
handles the series-termination effect very well. When 
the data are noisy, calculated values of strong reflec- 
tions from the resulting maximum-entropy EDD 
show large deviations from the measured values. Of 
all reflections, the strong reflections cause the largest 
decrease of entropy from its maximum, which is 
obtained with the flat EDD. The MEM will therefore 
always try to lower the absolute values of these 
strong reflections within the limits of the constraints. 
This contradicts the assumed randomness in the 
errors of the reflections and leads to a bad EDD. 
When maximizing the entropy subject to C = M, we 
are only fitting the variance of the distribution, we 
do not put any constraint on its shape. 

The use of an appropriate weighting scheme par- 
tially solves this problem. It leads to an improved 
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Fig. 12. Error-distr ibution histogram from the M E M  calculation 
of the silicon data at intervals of 0.5. (a) No weighting scheme. 
(b) Weighting scheme. 

EDD because it prevents the strong reflections 
deviating much from their measured values. 

APPENDIX A 

We now describe the optimization algorithm in some 
detail. We consider the densities f~jm as the com- 
ponents of an N] × N2 x N3-dimensional vector. At 
every step of the optimization, we choose a search 
direction in the space spanned by the vectors e l, e 2 
and e 3, with components 

aS 
e~m - , (16) 

8 lnfjm 

aC 
e~m - , (17) 

0 lnf~jm 

02C 
e3m = fijm Z ofijmOf.7,m,(Olle]'J 'm' - a:e,Z'J'm'), (18) 

i ' , j ' ,m ' 

where ai = [Z(OS/O lnf'jm)Z/fjm] -I/2 and a :  = 
[~(OC/O lnfjm)Z/fjm]-1/2. Note that, in the definitions 
of e I and e 2, we explicitly use In fore as the basic 
variables. This does not hold true for e3; in practice, 
however, this never leads to negative densities, e 3 was 
suggested by Skilling & Bryan (1984), after some 
experience with this and other choices. In the search 
space, we construct quadratic expansions of S ( f )  
and C( f )  around the densities fOm of the last 
iteration step 

3 3 3 

S ( f ) =  S ( f  °)+ Z Sux~, + ½ Z E h~vxux,, (19) 
p ~ = l  p . = l v = l  

3 3 3 

C ( f ) =  C ( f  °)+ Z Cux~ + ½ Z Z tu,xux,,, (20) 
/ z = l  /.L= i u =  l 

where 
3 

fijm= fO.m -F Z xjzei~m. (21) 
/ . * = l  

Note that the expansion of C( f )  in (20) terminates at 
the second derivative and is therefore exact. The 
coefficients in (19) and (20) can be calculated from 

aS ,, 
S u = Z --7- e ijm 

Om Oj~jm 

OzS 
h ~  = ~ Z ~" e h ,  m, (22) am i'/m ,earn of, jmOf,'j'm' 

OC 
C~ = ~ -----:--eijm 

O'm OJOm 

O2C 
tt*~" = ~'. Z e~m " (23) 

Um i7',,' OfjmOf"/m' e i , j , m , .  

It is at this point that we meet the great advantage of 
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(11) over (10) because both S ,  and h~,, can be 
obtained from very simple expressions: 

S~, = E (ln A - In fjm)e~m, 
tym 

h~,~, - Z eijmeijm/f'jm • (24) 
/ jm 

Calculation of C,  and t~,~ is a bit more involved and 
we defer its description to Appendix B. To simplify 
the calculations even further, we introduce linear 
combinations E ~' of e ~, e 2 and e 3 such that h~,. 
becomes minus the identity. According to (24), this 
can always be done by a Gramm-Schmidt  orthogo- 
nalization with ~ijm.iV,m,/fijm a s  metric, In the next 
step, we diagonalize t~,~,. Our final model is then 

"Ajrn ~ 0 - f ij~ + Y.y.E~m, (25) 
/z 

S ( f )  S( f° )  + 7. S . y .  1 2 = - ~Y.y~, (26) 
/z /x 

1 2 c(U)  = C ( f  °) + Z C~,Yu + ~Y~ Y~,Y~,, (27) 
Iz Iz 

where the y~ are the eigenvalues of t~,~ referred to 
above and S ,  and (~,. are the transformed S ,  and 
C~,. Maximization of Q ( f )  = a S ( f )  - C ( f )  yields 

Yu. = (aS~, - d~.)/(y,  + or). (28) 

We still have to choose a such that the constraint of 
(8) is satisfied. This can most easily be done by 
choosing a such that ( ~ ( f ) = M .  a can be 
determined easily since the value of C increases 
monotonically in a. Of course, in the first part of the 
run a situation may occur in which this criterion 
cannot be satisfied. The minimum value of (~ that 
can be obtained at every step is given by 

C m i  n "-- c ( U  °) - ½ZC~,C~,Iyu. (29) 
/z 

The choice of a such that C ( f )  = C m i  n would cause 
the density to be completely determined, at this step, 
by the constraint and not by the entropy. We there- 
fore choose a such that C ( f )  =Caim, with 

C a i m  = max (~?m~, + ~Co,M). (30) 

If the optimization starts from a fiat image, the value 
of C ( f )  will gradually decrease during the first part 
of the run and be constant once the surface C ( f ) =  
M has been reached. 

Since the quadratic model will be inaccurate at 
large distances, a limit has to be placed on the 
difference 6 f j  m. Skilling & Bryan (1984) have chosen 

/2 ( f )  = E (~f/jm)2 
om A)m -- ~ y2 <_ (31) 

The value of l 2 should be O(Y. f ) .  In all our calcula- 
tions, a value of l 2 = 0 .2Yf  was used. So another 

Lagrange multiplier is introduced. We have to max- 
imize 

O = a S ( f )  - C ( f )  - f l lZ( f ) ,  fl >- O. (32) 

The maximum of (32) can be found at 

y~ = (aS~ - C.)/(213 + Yu + or). (33) 

If the optimization starts with 13 = 0, the value of 13 
is increased until the distance constraint is satisfied. 
This means that, for 13 ~ 0, the desired value of (? 
might not be reached. 

APPENDIX B 

The matrix t.~ can be calculated from 
02C 

= u,, eijm Of.jmOf.,j,m ' er;,,,,. iT'rn' 
The Hessian of C is not diagonal, so the calculation 
of t,~ involves a matrix-vector operation. Calcu- 
lating this matrix-vector product involves of the 
order of N 2 operation, where N is the total number 
of pixels. Since N can be very large [O(106)], this 
operation is prohibitive. Using 

O2C O 2 C  OF~kt OFh,k,r 

Of'jmOfi'j 'm' - hk, ~ hv,'r ~ OF,,k, orh,k,,, Ofj,. of'i'm'' (35) 

we may write 

e ijm 
ijm i~/'m' 

02C OFhkI OFh'k'r 
× hk, ~ h'k'," ~ Orhk,OF,,.k,,, Ofjm of'v'm' eiV'j'm'" (36) 

Changing the order of summation, we get 

02C [ ~  ~, OFhkl\ 
G " =  ~ ~ OFh,,OFh,,',' ~ L e o " - a ~ - J  hkl h'k'l' x ijm ~d um ¢ 

x ( z . i ' j ' m '  ~ ] (37) 

dEc 
7"- /,,a - v = )--' ~ ,J(e )hk,,~'(e )h't,','- (38) 

h,,, h'k'r OFhk, OFh'k'r 

The symbol . f  expresses a (three-dimensional) 
Fourier transform. The matrix O2C/OFhk~OFh,k,r is 
diagonal since 

02C 
= 0 for hkl ~ h'k' l ' ,  (39) 

OFhktOFh'k'r 

0 2 C  2 

OF2kt Or2kl 

Then, 

for hkl = h ' k T .  (40) 

t , ~ =  Y. (2/cr2kt).C-(e~)akl.f(e")akl. (41) 
hkl 
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So t~, can be calculated using the fast Fourier 
transform, which involves O(N log2 N) operations. 

The v e c t o r s  OC/Ofijm and e 3 c a n  be calculated in an 
analogous way. In total, six Fourier transforms are 
need in each cycle: 

(i) one Fourier transform for the determination of 
Fhkt from the current EDD; 

(ii) one Fourier transform for the determination of 
the vector OC/Ofjm; 

(iii) one Fourier transform for the determination 
of the vector e3; 

(iv) three Fourier transforms for the determination 
of t~,,. 
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Abstract 
New approaches to the interpretation of contrast- 
variation data from monodisperse systems using 
spherical harmonics are presented. A general method 
is given for evaluating the particle shape and internal 
structure and expressions for the scattering from the 
density fluctuations inside a particle with a known 
shape are derived. Further, the scattering from two- 
component particles is analyzed in terms of the 
positions and/or shapes of the components and the 
information content of the contrast-variation data is 
discussed. The methods can be used for advanced 
low-resolution structure analysis of various types of 
biopolymers in solution. 

Introduction 
Small-angle scattering (SAS) is one of the most 
effective methods of investigating the superatomic 
structure of native biopolymers and their complexes 
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in solution (Feigin & Svergun, 1987). The SAS inten- 
sity I(s) of a dilute monodisperse solution of bio- 
polymers is proportional to the scattering from a 
single particle averaged over all orientations [here s 
denotes the modulus of the scattering vector s, s = 
(4rr/,~)sin0, ,~ is the wavelength and 20 is the scat- 
tering angle]. Recent developments in experimental 
techniques (see e.g. Feigin & Svergun, 1987, ch. 8; 
Koch, 1991) allow one to register precise SAS curves 
over a wide range of scattering vectors and com- 
prehensive data interpretation is therefore of great 
importance. 

As solution scattering provides low-resolution 
structural information, it is usually interpreted in 
terms of homogeneous particles. Shape modeling is 
still one of the most frequently used approaches 
(Feigin & Svergun, 1987, ch. 3.5). The direct method 
of Stuhrmann (1970b) with the recent improvements 
of Svergun & Stuhrmann (1991) allows low- 
resolution shape determination using a straightfor- 
ward procedure. As the scattering-length density of 
biopolymers in solution is by no means homo- 
geneous, shape modeling or determination, in a strict 
sense, has to be applied to the 'shape scattering' 
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